Efficient, chemoselective synthesis of immunomicelles using single-domain antibodies with a C-terminal thioester

نویسندگان

  • Sanne WA Reulen
  • Ingrid van Baal
  • Jos MH Raats
  • Maarten Merkx
چکیده

BACKGROUND Classical bioconjugation strategies for generating antibody-functionalized nanoparticles are non-specific and typically result in heterogeneous compounds that can be compromised in activity. Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester, providing a unique handle for site-specific conjugation using native chemical ligation (NCL). However, current methods to generate antibody fragments with C-terminal thioesters require cumbersome refolding procedures, effectively preventing application of NCL for antibody-mediated targeting and molecular imaging. RESULTS Targeting to the periplasm of E. coli allowed efficient production of correctly-folded single-domain antibody (sdAb)-intein fusions proteins. On column purification and 2-mercapthoethanesulfonic acid (MESNA)-induced cleavage yielded single-domain antibodies with a reactive C-terminal MESNA thioester in good yields. These thioester-functionalized single-domain antibodies allowed synthesis of immunomicelles via native chemical ligation in a single step. CONCLUSION A novel procedure was developed to obtain soluble, well-folded single-domain antibodies with reactive C-terminal thioesters in good yields. These proteins are promising building blocks for the chemoselective functionalization via NCL of a broad range of nanoparticle scaffolds, including micelles, liposomes and dendrimers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology

C hemoselectivity refers to the preferential reaction of a single chemical reagent with one of two or more different functional groups1. One of the most formidable challenges presented to synthetic chemists involves achieving high levels of chemoselectivity and regioselectivity amongst the myriad of reactive functionalities present in biological systems. Despite the onerous challenges, chemists...

متن کامل

Development and ELISA-based detection of anti-M2e IgY antibodies using an encoding plasmid for M2e-Hsp70 C-terminal gene

Background: The use of IgYs in a variety of methods in different areas of research, diagnostics, medical application and biotechnology should be considered widely. Objectives: Development of antibodies against extra cellular domain of influenza M2 (M2e) protein in egg yolk of laying hens. Methods: A Fusion construct harboring C-terminal of bovine heat shock protein 70 (Hsp70) and influenza M2e ...

متن کامل

Chemoselective Synthesis of 1,1-diacetate Using Ni2+@ Hydroxyapatite-core@shell γ-Fe2O3 Nanoparticles as an Efficient and Reusable Lewis Acid Catalyst under Solvent Free Conditions

A simple and efficient method for the chemoselective 1,1-diacetate protection of aromatic aldehydes with acetic anhydride by using Ni2+ supported on hydroxyapatite-core-shell magnetic γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+) under solvent free conditions. This method has several advantages, including high yield, short reaction time, simple work-up and recyclable property of the catalyst. The ca...

متن کامل

Immunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E

Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...

متن کامل

An Efficient Method for the Chemoselective Synthesis of Germinal Diacetates from Aromatic and Heteroaromatic Aldehydes Using Nano Silica Chloride

In this investigation, Nano silica chloride (nano SiO2Cl) has been found to be efficient, chemoselective and recyclable catalyst for facile and simple synthesis of germinal diacetates from aromatic and heteroaromatic aldehydes in shorter reaction durations. The products were obtained in high to excellent yields. This work consistently has the advantages of excellent yields, short reaction time,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Biotechnology

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009